(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

Recent Additions: New and Updated Entries in the Past 60 Days
Displaying entries 16 through 30 of 115 found.

An Organic, Conducive, Habitable MultiUniVerse

Animate Cosmos > Organic > Biology Physics

Lou, Yuting, et al. Homeostasis and Systematic Ageing as Non-equilibrium Phase Transitions in Computational Multicellular Organizations. Royal Society Open Science. Online July 10, 2019. University of Tokyo and Fudan University, Shanghai systems biologists provide another notice of physical principles at work throughout life’s somatic activities and long developmental course.

The breakdown of homeostasis in tissues involves multiscale factors ranging from the accumulation of genetic damages to the deregulation of metabolic processes. Here, we present a multicellular homeostasis model in the form of a two-dimensional stochastic cellular automaton with three cellular states, cell division, cell death and cell cycle arrest. Our model illustrates how organisms can develop into diverse homeostatic patterns with distinct morphologies, turnover rates and lifespans without considering genetic, metabolic or other variations. Those homeostatic states exist in extinctive, proliferative and degenerative phases, which undergo a systematic ageing akin to a transition in non-equilibrium physical systems. (Abstract excerpt)

Animate Cosmos > Organic > Biology Physics

Ross, Tyler, et al. Controlling Organization and Forces in Active Matter through Optically-defined Boundaries. Nature. 572/224, 2019. CalTech bioengineers uncover non-equilibrium phenomena and principles by optically controlling structures and fluid flow in an engineered system of active biomolecules which led to views of an innate tendency to spontaneously organize into animate structures and movements.

Animate Cosmos > Organic > Universal

Ball, Philip. Quantum Darwinism, an Idea to Explain Objective Reality, Passes First Tests. Quanta Magazine. Online July 22, 2019. The British science writer and 2018 European physics book winner for Beyond Weird provides a luminous entry to this title theory by Wojciech Zurek (search). In a capsule, it aims to detect and explain a selective process in effect amongst an optional array of conditions even at this physical phase. After a course through decoherence, observation, superposition, and more, it is reported that three independent projects now seem to offer experimental proofs of its validity. As the deepest substrate for our expansive cosmos, as a singular universe to human continuum is being revealed, so also is a pervasive presence of this evolutionary computational scheme of multiple variation and preferential result.

The vexing question becomes: How do quantum probabilities coalesce into the sharp focus of the classical world? But there’s no reason to think that the large and the small have different rules. One of the most remarkable ideas is that the definite properties of objects that we associate with classical physics are selected from a menu of quantum possibilities in a process loosely analogous to natural selection in evolution: The properties that survive are in some sense the “fittest.” As in natural selection, the survivors are those that make the most copies of themselves. This means that many independent observers can make measurements of a quantum system and agree on the outcome — a hallmark of classical behavior. This idea, called quantum Darwinism, explains a lot about why we experience the world the way we do. (1)

Animate Cosmos > Thermodynamics

Adesso, Gerardo, et al, eds. Shannon’s Information Theory 70 Years On: Applications in Classical and Quantum Physics. Journal of Physics A. 2018,, 2019. British, Australian and Japanese physicists post a wide ranging collection which can serve as a record into the 21st century as these aspects of energies, quantum phenomena, communication, and more increasingly meld and become united. See, for example, Information-Thermodynamics Link Revisited by Robert Alicki and Michal Horodecki (search), The Stochastic Thermodynamics of Computation by David Wolpert, and Uncertainty-Reality Complementarity by Lukasz Rudnicki.

British, Australian and Japanese physicists post a wide ranging collection which can serve as a record into the 21st century as these aspects of energies, quantum phenomena, communication, and more increasingly meld and become united. See, for example, Information-Thermodynamics Link Revisited by Robert Alicki and Michal Horodecki (search), The Stochastic Thermodynamics of Computation by David Wolpert, and Uncertainty-Reality Complementarity by Lukasz Rudnicki.

Animate Cosmos > Thermodynamics > quant therm

Alicki, Robert and Michal Horodecki. Information-Thermodynamics Link Revisited. Journal of Physics A. 52/8, 2019. In a special Shannon’s Information Theory 70 Years On collection, University of Gdansk, Poland physicists (search) continue to finesse this intrinsic affinity between energies and communication.

The so-called information-thermodynamics link created by a thought experiment of Szilard has become a modern orthodoxy in the field of quantum information and resources theory in quantum thermodynamics. We recall existing objections against standard interpretation of Szilard engine operation and illustrate them by two quantum models: a particle in a box with time-dependent thin potential barrier and the spin-boson model. The consequences of the emerging superselection rules for thermodynamics and foundations of quantum mechanics are discussed. (Abstract)

Animate Cosmos > Astrobiology

Candian, Alessandra, et al. The Aromatic Universe. Physics Today. November, 2018. Dutch and Chinese scientists extol the innately essential presence of rich molecular structures of polycyclic aromatic hydrocarbons as planar flakes of fused benzene rings, along with their fullerene cousins, as revealed by their vibrational and electronic spectra.

Animate Cosmos > Astrobiology

Cunningham, Maria, et al, eds. Astrochemistry VII: Through the Cosmos from Galaxies to Planets. Cambridge: Cambridge University Press, 2018. These Proceedings of the International Astronomical Union Symposia S332 open with an Astrochemistry Overview by Ewine van Dishoeck. The volume goes on to convey how broad and deep this scientific endeavor has become as it proceeds to quantify and discover an inherently animate conducive ecosmos.

Since the discovery of ammonia in the interstellar medium of the Milky Way in 1968, we have identified around 160 complex organic molecules, which help us understand how stars and planets form. IAU S332 describes how such observations, combined with numerical modelling and laboratory astrochemistry, are used to study how the Universe has evolved.

Animate Cosmos > Astrobiology

Dagdigian, Paul. Quantum Statistical Study of the C+ + OH → CO + H+/CO+ + H Reaction. Journal of Chemical Physics. 151/054306, 2019. A Johns Hopkins University prolific senior chemist (view website) studies reaction rate and product branching ratio at interstellar temperatures. We cite as an integral meld of quantum and astrochemical phenomena at frontiers of our global verification of an organic, fertile, procreative ecosmic milieu. The work also conveys a 21st century biocosmic revolution in our midst which unifies all these disparate fields going forward.

Animate Cosmos > Astrobiology

Johnson, Jennifer, et al. The Origin of Elements across Cosmic Time. arXiv:1907.04388. This Astro2020 White Paper by seventeen scientists from American and European universities is a proposal for decadal studies to retrospectively quantify how nature’s biochemical array came to form. There are now over 360 Astro2020 postings on this site from thousands of international researchers and groupings. Every possible aspect seems to have been covered. See also for example, In Pursuit of Galactic Archaeology at 1907.05422, Scheduling Discovery in the 2020s at 1907.07817, and Climate Change Engagement in Astronomy Research and Education at 1907.08043.

The origin of the elements is fundamental to astronomy, with many issues such as the nature of Type Ia supernovae and timescale of their contributions; the observational identification of elements such as titanium and potassium; the origin of carbon and nitrogen and the influence of mixing and mass loss in winds; and the origin of the intermediate Cu, Ge, As, and Se elements in between charged-particle and neutron-capture reactions. The next decade will bring to maturity many new tools such as large-scale chemical cartography of the Milky Way, the addition of astrometric and asteroseismic information, and the detection of gravitational waves. (Abstract)

Animate Cosmos > Astrobiology

Novotny, Oldrich, et al. Quantum State Selective Electron Recombination Studies Suggest Enhanced Abundance of Primordial HeH+. Science. 365/676, 2019. As worldwide collaborations reconstruct how the lively Universe and phenomenal human beings came to be, a 26 person team based at MPI Nuclear Physics, with other postings in the Czech Republic, Germany, Russia, and Israel, cite results from the new University of Heidelberg Cryogenic Storage Ring which provide the best evidence to date for this helium hydride ur-molecule at the very onset of life’s cosmic evolution. See also a commentary First Molecule Still Animates Astronomers by Stefano Bovino and Daniele Galli in the same issue, and Astrophysical Detection of the Helium Hydride Ion HeH+ by Rolf Gusten, et al in Nature (568/357, 2019). In later 2019, we wonder how it might finally become critically possible to realize that an innately organic, astrobiological milieu exists on its procreative own.

The epoch of first star formation in the early universe was dominated by simple atomic and molecular species consisting mainly of two elements: hydrogen and helium. Gaining insight into this constitutive era requires thorough understanding of molecular reactivity under primordial conditions. We used a cryogenic ion storage ring combined with a merged electron beam to measure state-specific rate coefficients of dissociative recombination, a process by which electrons destroy molecular ions. We found a dramatic decrease of the electron recombination rates for the lowest rotational states of HeH+, compared to previous measurements at room temperature. The reduced destruction of cold HeH+ translates into an enhanced abundance of this primordial molecule at redshifts of first star and galaxy formation. (Abstract)

Animate Cosmos > Astrobiology

Puzzarini, Cristina and Vincenzo Barone. A Never-Ending Story in the Sky: The Secrets of Chemical Evolution. Physics of Life Reviews. Online July 5, 2019. Organic chemistry in space is nowadays a matter of fact. University of Bolonga and Scuola Normale Superiore, Pisa researchers first survey 21st century findings which affirm a universal propensity for biological precursors to arise and complexify across the galaxies. Going forward, an array of advanced methods are cited and proposed such as quantum chemical predictions of relative energies, computational astrochemistry, virtual reality perceptions, and more. The paper closes by harking back to Galileo’s experiental glimpses so as to look ahead as our whole Earthkind research endeavor as it seems to quantify and discover a creative ecosmos genesis.

Cosmic evolution is the tale of a progressive transition from simplicity to complexity. The newborn universe started with the simplest atoms and proceeded toward the formation of astronomical complex organic molecules (aCOMs), most with a clear prebiotic character. To disclose the “secrets” of chemical evolution across space, the first step is to learn how small prebiotic species came to be and chemical complexity can further increase. This review addresses the role played by molecular spectroscopy and quantum-chemical computations. We present how signatures of molecules can be found in space, and move to a computational view to derive molecular spectroscopic features, investigation of gas-phase formation routes of prebiotic species in the ISM, and onto astrochemical evolution. Finally, an integrated strategy by way of high-performance computers and virtual reality will be discussed. (Abstract excerpts)

Animate Cosmos > exoearths

Airapetian, Vladimir, et al. Impact of Space Weather on Climate and Habitability of Terrestrial-type Exoplanets. International Journal of Astrobiology. Online August, 2019. A forty-five member collaboration from NASA, across the USA, Austria, Germany, Japan, and Ireland provide an extended review and preview of this “astro-spheric” phase of a biocosmic spacescape which fills itself with evolutionary life bearing planets in solar incubators. A 206 page edition is accessible at arXiv:1905.05093.

Animate Cosmos > exoearths

Cooke, Ilsa and Ian Sims. Experimental Studies of Gas-Phase Reactivity in Relation to Complex Organic Molecules in Star-Forming Regions. ACS Earth and Space Chemistry. Online June, 2019. We note this entry by University of Rennes, CNRS, France astrophysical chemists as an example in this new journal of how sophisticated these research endeavors have become as they quantify ever increasing evidence of an intrinsic biocosmic essence which brings forth, complexifies, develops and evolves as it reaches our human ability and purpose to retrospectively learn and take form here.

The field of astrochemistry concerns the formation and abundance of molecules in the interstellar medium, star-forming regions, exoplanets, and solar system bodies. These astrophysical objects contain the chemical material from which new planets and solar systems are formed. Around 200 molecules have thus far been observed in the interstellar medium; almost half containing six or more atoms and considered “complex” by astronomical standards. All of these complex molecules consist of at least one carbon atom and thus the term complex organic molecules (COMs) has been coined by the astrochemical community. In the following review, we present recent laboratory efforts to produce quantitative kinetic data for gas-phase reactions at low temperatures. (Abstract excerpt)

The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal notes the highly interdisciplinary nature of research in this area, with chemistry and chemical research tools as the unifying theme. It publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry.

Animate Cosmos > exoearths

Kovacs, Tamas. Recurrence Network Analysis of Exoplanetary Observables. . We cite this entry by an Eotvos University, Budapest physicist as an example of how network complexity researchers are beginning to detect and quantify an intrinsic, independent, self-organizing mathematics which seems to apply even to the cosmic realm of dynamic solar systems.

Recent advancements of complex network representation among several disciplines motivated the investigation of exoplanetary dynamics by means of recurrence networks. We are able to recover different dynamical regimes by means of various network measures obtained from synthetic time series of a model planetary system. The framework of complex networks is also applied to real astronomical observations acquired by recent state-of-the-art surveys. The outcome of the analysis is consistent with earlier studies opening new directions to investigate planetary dynamics.

Cosmomics: A Genomic Source Code in Procreative Effect

Cosmic Code

Parker, Michael and Chris Jeynes. Maximum Entropy (Most Likely) Double Helical and Double Logarithmic Spiral Trajectories in Space-Time. Nature Scientific Reports. 9/10779, 2019. University of Essex and University of Surrey computational physicists post a unique mathematical procedure to explain how natural phenomena so often adopt into this dynamic patterning. By this view, a common affinity between genomes and galaxies can provide another glimpse of nature’s geometric universality.

The ubiquity of double helical and logarithmic spirals in nature is well observed, but no real explanation is offered for their prevalence. DNA and the Milky Way galaxy are examples, which we study using an information-theoretic complex-vector analysis to calculate the Gibbs free energy difference between B-DNA and P-DNA, and the galactic virial mass. We define conjugate hyperbolic space and entropic momentum co-ordinates to describe these spiral structures in Minkowski space-time, enabling a consistent, holographic Hamiltonian-Lagrangian system that is isomorphic and complementary to that of conventional kinematics. (Abstract excerpt)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  Next