![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
I. Planatural Genesis: A Phenomenal, PhiloSophia, Propaedutic, TwinKinder, PersonVerse EndeavorC. Our Earthumanity Glimpses an Animate Family Ecosmos Cocreative MultiUniVerse Menichetti, Giulia and Albert-Laszlo Barabasi. Nutrient Concentrations in Food Display Universal Behavior. Nature Food. 3/375, 2022. Northeastern University network theorists focus their studies on the wide-ranging aspects our human sustenance from its production, quality to supplies. Once more, an exemplary presence of nature’s independent, generative complexities becomes well evident even for this global speciesphere instance. Extensive programmes around the world proceed to measure and catalogue the composition of food. Here we analyse the nutrient content of the full US food supply and show that the concentration of each nutrient follows a universal single-parameter scaling law that accurately captures the eight orders of magnitude in nutrient variability. We show that the universality is rooted in the biochemical constraints obeyed by the metabolic pathways for nutrient modulation. This provides a mathematical rationale for food composition databases and aids a quantitative understanding of food processing on nutrient balance and health effects. (Abstract excerpt) Meshulam, Leenoy and William Bialek. Statistical mechanics for networks of real neurons.. arXiv:2409.00412. University of Washington, Seattle and Princeton University biophysicists post another late 2024 significant, comprehensive cross-integration of complex cerebral systems with newly perceived groundings in physical principles. As the quotes say, several features gain stronger notice such as an invariant similar scale, constant self-organization, and a long sought integral universality. As an eminent polyscholar, Bialek (LMs doctoral advisor at Princeton) notes the historic relevance of finally achieving a robust confluence. See also his collegial arXiv.com preprints this year such as Maximum entropy models for patterns of gene expression (arXiv:2408.08037), Ambitions for theory in the physics of life (WB, arXiv:2401.15538, herein) and Scale invariance in early embryonic development (arXiv:2312.17684). Perceptions and actions, thoughts and memories result from coordinated activity in thousands of neurons in the brain. It is an old dream of the physics community to provide a statistical mechanics basis for these and other emergent phenomena of biological life. Our proposal here is that these aspirations are just now being fulfilled by an array of new abilities to measure the multiphase electrical activity throughout the brain. We review progress as it brings theory and experiment together by a focus on maximum entropy and renormalization groups. These confluent approaches can then discern quantitatively reproducible collective behaviors in layered networks of real neurons, and provide independent, parameter-free predictions. (Abstract) Milli, Smitha, et al. A Rational Reinterpretation of Dual-Process Theories. Cognition. Vol. 217, October, 2021. This section has sought to gather many findings since the 1970s that human beings, and all creatures, possess a double neural-cognitive faculty whereof each half contributes a vital attribute. Along with bicameral brain studies, a divide into slower, think about it and fast, just do it options has a currency, but with debate. Into 2021, UC Berkeley, MPI Intelligent Systems and Princeton University scholars propose a clarification by way of the same, typical left and right hemisphere modes of separate details and contextual orientation. By so doing, an integral synthesis is achieved as a bigender complementarity. But its presence sets up a deep quandary. While a scientific, psychological, academic literature posts this historic advance, our vital bioplanet remains in a terminal condition because politics, nations, factions, warlords rage with no sense of any greater natural knowledge and guidance. Highly influential “dual-process” accounts of human cognition postulate the coexistence of a slow accurate system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, we argue that a two part faculty might reflect a rational tradeoff between the cognitive flexibility afforded by multiple systems and the time and effort required to choose between them. We find that the optimal number of systems depends on the variability of the environment and the difficulty of deciding when which system should be used. We find a plausible range of conditions under which it is better to have a fast approach without any deliberation (“System 1”) and a slower view that is more accurate through considerations (“System 2”). (Abstract) Montgomery, Beronda. Following the Principles of the Universe: Lessons from Plants on Individual and Communal Thriving. Integrative and Comparative Biology. August, 2023. Beronda L. Montgomery is Professor of Biology, and Vice President for Academic Affairs and Dean of Grinnell College, Iowa follows up her 2021 book with this title by a further survey of natural wisdom teachings as everything get worse. In regard, we note forester Suzanne Simard who warned of Canadian fires in 2016, and Merlin Sheldrake who writes about fungi webworks (search each). Please also refer to the ubuntu Universe section about an African woman’s wisdom. The means by which planets and exist in and respond to dynamic environments to thrive as individuals and in communities can provide lessons for humans on sustainable and resilient abide. As a follow up to my 2021 book, Lessons from Plants (Harvard UP), I consider how insights gathered from plant physiology, phenotypic plasticity, and plant growth vitalities can help us improve our lives and our society. Plants are even capable of transformative behaviors so aa to boost their chances of survival, while modifying environs in which they abide. These lessons focus on how plants achieve their own purposes by following common lively principles of the natural universe. (Excerpt)
Nonacs, Peter, et al.
Social Evolution and the Major Evolutionary Transition in the History of Life.
Frontiers in Ecology and Evolution.
December,
2021.
The editors for this special section are Peter Nonacs UCLA (Center for Behavior, Evolution & Culture,) Karen Kapheim, Utah State University (comparative genomics) and Heikki Helantera, University of Helsinki, (evolutionary ecology) are deeply engaged in field and conceptual studies which could be well served by an endemic structural arrangement and emergent orientation (Brief capsules in their own words below.) As an observation, just as a teleologic course could no longer be ignored (section herein), so this nested scale from 1995 is now similarly gaining a full, revelant acceptance. Its inclusion then describes a revolutionary (EarthWin) appreciation of life’s true developmental gestation. A further merit is a strongest case to date for an ascendant personsphere sapience learning on her/his own. In their classic 1995 book, John Maynard Smith and Eors Szathmáry sketched the evident presence of eight major evolutionary transitions (METs) in the long history of life on earth. But 27 years since, optional views, and detail debates about defining features and qualities still persist. Attempts to find deep, constant patterns and processes also go on, but have not yet integrated this entire sweep of evolution and ecology from replicating molecules to loquacious humans. It seemed appropriate to post a topical issue which could gather, assimilate and enjoin these many aspects, air specific issues and consider a common, nested sequence. To wit, METs are seen to occur as fusions of independent individuals into a higher order entity, along with a novel way that information is stored and transmitted. In addition, the ecological context where this ascendant course goes on is rarely considered. Into these 2020s, new findings and novel ideas about life’s developmental stirrings, genetic bases and consequent course to our consummate global retrospective could provide a salutary synthesis. (Nonacs, et al, Introduction excerpt) Ourllette, Nicholas. A Physics Perspective on Collective Animal Behavior. Physical Biology. 19.2, 2022. The Stanford University systems physicist (search) has become a leading authority for the study of dynamic group-wide activities, and the derivation of common features across all manner of species. His subject choice has been midge insects suitable for laboratory tests. (I heard Nicholas speak at UMass Amherst around 2010 when he was at Yale. A view even back then was that it didn’t matter which critter one chose, they all behave the same.) Into 2022, this timely review with 160 references can now cite a robust confirmation of this natural invariance. Premier research has investigated avian flocking, fish pods, wildebeest herds and all the way to invertebrate molds. (That is, except people because individual me yet opposes social We.) Akin to Self-Organization in Stellar Evolution (Georigiev, 2022), our EarthWise endeavors seem to be entering a new convergent stage of universal confirmations. Stars and starlings array and move to the same independent, genotype-like score and script. We may begin to glimpse an actual 2020s discovery that our participatory bioplanet is meant to achieve. The dynamic patterns and coordinated motion displayed by groups of social animals are a beautiful example of self-organization in natural far-from-equilibrium systems. Recent advances in active-matter physics have enticed physicists to consider how their results can be extended from microscale physical systems to groups of real, macroscopic animals. At the same time, better measurement technologies have achieved high-quality empirical data for animal groups both in the laboratory and the wild. In this review, I describe how physicists have approached synthesizing, modeling, and interpreting this information, both at the level of individual animals and the group scale. I focus on the kinds of analogies that physicists have made between animal groups and more traditional areas of physics. (Abstract) Parisi, Giorgio. In a Flight of Starlings: The Wonders of Complex Systems. New York: Penguin, 2023. . As a way to belatedly recognize so many advances in this new scientific field, the 2022 Nobel physics prize was awarded to Giorgio Parisi, a pioneer Italian theorist since the 1970s as a representative choice.. In response he wrote this slim edition as a broad survey of science itself, its social values, and specific aspects such as phase transitions and collective phenomena, spin glasses and so on. But we remind that this 21st century revolution remains at much odds with the old particle paradigm whereof nothing else exists or is going on by itself. In a Flight of Starlings, celebrated physicist Giorgio Parisi guides us through his unorthodox yet exhilarating work, starting with investigating the principles of physics by observing the flight of flocks of birds. Studying the movements of these communities, he has realized, proves an illuminating way into understanding complex systems of all kind from atoms to other animals, such as ourselves, and onto planets. Along the way, he reflects on the lessons he has taken from a life in pursuit of scientific truth: the importance of serendipity to the discovery of new ideas, the surprising kinship between physics and other disciplines, and the value of science to a thriving society. Giorgio Parisi is a professor of theoretical physics at the Sapienza University of Rome. Plotnitsky, Arkady and Emmanuel Haven, eds. The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov. Online: Springer, 2023. A Purdue University physicist and a Memorial University, Canada economist gather a steady flow of frontier, innovative papers by the Russian polyscientist presently at the International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, Sweden. Search AK on the arXiv.org eprint site for some 321 results. A main theme of his expansive thought is to explain how quantum phenomena is similarly evident in many seemingly far-removed areas. For a latest paper see Open Systems, Quantum Probability, and Logic for Quantum-like Modeling in Biology, Cognition, and Decision-Making in Entropy (25/6, 2023, also 2306.08599) Over the last ten years, the malleable formalism of quantum-like models are broadly applied in areas such as psychology, cognition, economics, political science, and molecular biology. This Festschrift honors a key figure in this field: Andrei Khrennikov, who made momentous contributions to both quantum foundations and these expansions. But the volume orients its reader more toward the future. Khrennikov’s luminous, frontier advances have well established the great promise of quantum and quantum-like thinking across an interdisciplinary 21st century synthesis of classical phases and the physical foundations that they manifestly arise from and exemplify. (Book)
Ravn, Ib.
Beyond Chaos and Rigidity, Flexstability.
New Ideas in Psychology.
August,
2022.
As peoples and cultures world over become so polarized between such dual archetypal opposites, persuasions or fixations, a senior Aarhus University, Danish School of Education psychologist proposes an evident (once and future) middle way integrative unity. See also similar suggestions such as tradition and innovation by Jagiello, Heyes and Whitehouse, and participants and socialism by Thomas Piketty. In our regard, an active balance of conserve/create, regress/progress, particle/wave, war/peace, me individual/We society on every scale and instance can viably ensue. mitigate and resolve. Chaos and rigidity are often used to describe problematic psychological states. If they are to be avoided, how does one conceive of a normative alternative? This paper proposes that underlying chaos and rigidity are two dimensions of healthy human experience, those of stability (focus, routine, unity) and flexibility (exploration, novelty, diversity). This essay proposes an optimal, unified state of “flexstability” in which individuals experience both flexibility and stability at the same moment. Chaos can be now understood as flexibility without stability, and rigidity as stability without flexibility. We apply this option to seven research areas in psychology: parenting styles, identity formation, development of mind, flow, creativity, emotional regulation and self-determination. (Abstract) Safron, Adam, et al. Making and Breaking Symmetries in Mind and Life. Interface Focus. April, 2023. Johns Hopkins University, SUNY Stony Brook, McGill University, Monash University and Tufts University (Michael Levin) introduce and edit an eclectic collection as a thematic essence that mindful behaviors provide a heretofore undervalued formative force. A broad sample of entries include Reflections on the Asymmetry of Causation by Jenann Ismael; On Bayesian Mechanics: A Physics of and by Beliefs by Maxwell Ramstead, et al; Embodied cognitive morphogenesis as a route to intelligent systems by Bradley Alicea, et al, As Without, So Within: How the Brain’s Temporal-Spatial Alignment Shapes Consciousness by Georg Northoff, et al; Emergence of common concepts, symmetries and conformity in agent groups by Marco Moller and Daniel Polani. Symmetries appear throughout the natural world, making them important in our quest to understand the world around us.. The study of symmetries is so fundamental to mathematics and physics that one might ask where else it proves useful. This theme issue poses the question: what does the study of symmetry, and symmetry breaking, have to offer for the study of life and the mind? (Excerpt) Sagan, Dorion. From Empedocles to Symbiogenesis: Lynn Margulis’s Revolutionary Influence on Evolutionary Biology. Biosystems. June, 2021. We cite this latest essay as a succinct record of her valiant endeavor to break out of old male fixation into a vital sense of an animate procreation graced by a universal principle of positive, reciprocal conciliations between all phases of organic entities. Yet we have a world tearing itself apart due to violent oppositions, which is in desperate need for such a unifying scientific vision. I have heard and met Lynn in Amherst, in my opinion she could merit being the one woman who could rise to the status of a Newton or Darwin. As a primary expositor of the work of Lynn Margulis collaborating with her over thirty years on over thirty books and forty articles, scientific and popular, I attempt here to summarize her unique and lasting influence on evolutionary biology. Describing life on Earth as the multi-billion-year evolution of microbial communities, from prokaryotes maintaining Earth's atmosphere away from thermodynamic equilibrium to all eukaryotes as polygenomic beings, Margulis's interdisciplinary work has deeply influenced multiple fields including systematics, theories of the evolution of metabolism, paleobiology, and biogeochemistry. Overturning the neo-Darwinist narrative that speciation almost always occurs by the gradual accumulation of random mutations, Margulis's work revives a discarded philosophical speculation of the pre-Socratic Empedocles, who suggested that Earth's early beings both merged and differentially reproduced. Margulis's curiosity-driven science, collaborative work ethic, status as a woman, embrace of novelty, philosophical stance, current status of her theories, and the proposal for a new science of symbiogenetics are among the topics examined. (Abstract excerpt)
Sanchez-Puig, Fernanda, et al.
Heterogeneity Extends Criticality.
arXiv.2208.06439.
In August 2022, a five person team with postings at the Universidad Nacional Autonóma de México, Microsoft, Redmond, Aalto University, Finland and far afield including Carlos Gershenson achieve a significant advance toward identifying how and why a middle way poise between a relative more or less order seems to be nature’s optimum preference. As the quotes cite, while equilibrium, homogeneous conditions are widespread, many animate, cerebral and environmental situations exist in and benefit from a dynamic, non-equilibrium or heterogeneous mode. In technical terms, these tendencies are dubbed a self-organized criticality, aka chimera states. The paper makes a major point that such a phenomenal distinction, along with other reasons, can well explain this “sweet spot” universality that complex network systems from galactic clusters to communal groupings tend to seek and at best achieve. Criticality states have been proposed as vital for the emergence of complexity, life, and computation, as it exhibits a balance between order and chaos. In classic models of complex systems where structure and dynamics are considered homogeneous, criticality is restricted to phase transitions. Many real-world complex systems, however, are not homogeneous as elements change in time faster than others, with slower main elements providing robustness, and faster ones being adaptive. Connectivity patterns are likely heterogeneous with few elements and many interactions. Our studies well support this distinction and the ubiquitous presence of heterogeneity across physical, biological, social and technological systems. (Abstract)
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 Next
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |